Global minimization of a quadratic functional: neural network approach
نویسندگان
چکیده
N -dimensional vectors ) ,..., , ( 2 1 N s s s = s will be called configuration vectors. They define N 2 possible states of the system (the configurations), among which the optimal configuration with regard to the objective function ) (s E has to be found. The number of different states increases exponentially, when N increases. Already if N > 50, it is almost impossible to solve the problem by means of direct enumeration. In physical applications and in the theory of neural networks the matrix
منابع مشابه
A Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملHybrid Control to Approach Chaos Synchronization of Uncertain DUFFING Oscillator Systems with External Disturbance
This paper proposes a hybrid control scheme for the synchronization of two chaotic Duffing oscillator system, subject to uncertainties and external disturbances. The novelty of this scheme is that the Linear Quadratic Regulation (LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function Neural Network (GRBFNN) control are combined to chaos synchronization with respect to extern...
متن کاملHopfield-Amari Neural Network: Minimization of Quadratic Forms
In this research paper, the problem of minimization of quadratic forms associated with the dynamics of Hopfield-Amari neural network is considered. An elegant (and short) proof of the states at which local/global minima of quadratic form are attained is provided. A theorem associated with local/global minimization of quadratic energy function using the HopfieldAmari neural network is discussed....
متن کاملSDO relaxation approach to fractional quadratic minimization with one quadratic constraint
In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...
متن کاملA Recurrent Neural Network Model for solving CCR Model in Data Envelopment Analysis
In this paper, we present a recurrent neural network model for solving CCR Model in Data Envelopment Analysis (DEA). The proposed neural network model is derived from an unconstrained minimization problem. In the theoretical aspect, it is shown that the proposed neural network is stable in the sense of Lyapunov and globally convergent to the optimal solution of CCR model. The proposed model has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/cs/0412109 شماره
صفحات -
تاریخ انتشار 2004